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We present the first Rare Earth Elements (REE) concentration record determined in 294 sections of an
Antarctic ice core (EPICA Dome C), covering a period from 2.9 to 33.7 kyr BP. REE allow a detailed
quantitative evaluation of aeolian dust composition because of the large number of variables (i.e. 14
elements). REE concentrations match the particulate dust concentration profile over this period and
show a homogeneous crustal-like composition during the last glacial stage (LGS), with only a slight
enrichment in medium REE. This signature is consistent with the persistent fallout of a mixture of dust
from heterogeneous sources located in different areas or within the same region (e.g. South America).
Starting at ~ 15 kyr BP, there was a major change in dust composition, the variable character of which
persisted throughout the Holocene. This varying signature may highlight the alternation of single dust
contributions from different sources during the Holocene. We observe that the frequent changes in REE
composition at the onset of the Holocene (10-13.5 kyr BP) are linked to dust size and in turn to wind
strength and/or the path of the atmospheric trajectory. This may indicate that atmospheric circulation
dictated the composition of the dust fallout to East Antarctica at that time. Although the dust concen-
trations remained fairly low, a notable return towards more glacial dust characteristics is recorded
between 7.5 and 8.3 kyr BP. This happened concomitantly with a widespread cold event around 8 kyr BP
that was 400-600 years long and suggests a moderate reactivation of the dust emission from the same
potential source areas of the LGS.

Published by Elsevier Ltd.

1. Introduction low, ranging from ~15ngg~' during interglacials up to
~800ngg~! during glacial stages. As snow accumulation rates

Ice cores provide compelling evidence that airborne dust from
the austral continents reached Antarctica during the past climatic
cycles (e.g. Wolff et al., 2006, Fischer et al., 2007; Delmonte et al.,
2008). However, dust concentrations in Antarctic ice are extremely
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were reduced during cold periods, a glacial/interglacial flux ratio of
~25 was deduced by Lambert et al. (2008). The dust trapped in
Antarctic ice is composed of detrital minerals such as clays, quartz
and feldspars (Gaudichet et al., 1988). In particular, illite, chlorite,
smectite and kaolinite are present at any time but a significantly
smaller amount of kaolinite was observed in Last Glacial Maximum
(LGM) samples (Gaudichet et al., 1992).

One important question of Antarctic glaciology concerns the
provenance of dust trapped in the ice. The answer would provide
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important information on the past atmospheric circulation, serving
to validate global circulation models and offering clues on the
ancient environmental conditions of the surrounding continents. Sr
and Nd isotope studies in East Antarctic ice cores (Delmonte et al.,
2008), along with atmospheric circulation modelling (Lunt and
Valdes, 2001) have identified South America as a major dust
contributor during glacial stages.

During cold periods, weathering and glacial erosion likely
played an important role in the dust production in southern South
America (Gaiero et al., 2007; Sugden et al., 2009) and a persistent
westerly circulation might have allowed the transfer of dust
towards the interior of Antarctica (Krinner and Genthon, 2003).
However, there is a lack of knowledge concerning the characteris-
tics and the source of the dust transported to Antarctica during
interglacial stages. Some preliminary studies suggested that glacial/
interglacial changes in dust composition may have occurred
(Gabrielli et al., 2005a; Winckler and Fischer, 2006; Siggaard-
Andersen et al., 2007; Delmonte et al., 2007; Lanci et al., 2008;
Marino et al., 2008). It was also suggested that Australia could be an
important contributor of dust for Antarctica during the Holocene
(Revel-Rolland et al., 2006) and at present (Li et al., 2008).

Rare earth elements (REE) can provide a robust, specific and
versatile tool for the geochemical characterization of the aeolian
dust in Antarctic ice. The 14 REE (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy,
Ho, Er, Tm, Yb, Lu) range in atomic number from 57 (La) to 71 (Lu).
From here on, we differentiate between light REE (LREE; La, Ce, Pr,
Nd), medium REE (MREE; Sm, Eu, Gd, Tb, Dy, Ho) and heavy REE
(HREE; Er, Tm, Yb, Lu). As their atomic mass increases, their radius
decreases but they keep the same external electronic configuration.
Therefore, their chemical properties remain essentially identical,
allowing REE to behave like isotopes. REE are lithophilic refractory
elements that, due to their low solubility, are mostly transported in
the environment in the particulate phase. All these characteristics
prevent REE from being strongly fractionated by weathering and
diagenetic processes (except Ce and Eu that might be fractionated
by redox processes) and thus they are ideal as geochemical tracers
(Henderson, 1984).

The main advantage of using REE is that, as they are 14 elements,
they are potentially more suitable for delineating changes in the
aeolian dust composition. In addition, REE in polar ice are rarely
influenced by sources (e.g. volcanic ash fallout as found by Wei
et al., 2008) other than continental rocks and soil dust (Gabrielli
et al., 2009).

Here, we show the first record of REE concentrations deter-
mined in the EPICA ice core from Dome C in Antarctica (hereafter
EDC) from 2.9 to 33.7 kyr BP, which includes the Holocene, the last
transition, the LGM and part of the last glacial epoch. Based on
these novel dust tracers we provide strong evidence of a large
glacial/interglacial change in dust composition that started at
~15 kyr BP and continued through the Holocene, except for an
oscillation that occurred ~ 8 kyr BP which indicates a short return
towards more glacial-like dust. In addition, we present a prelimi-
nary evaluation of the dust provenance and the linkage between
the dust composition and the atmospheric transport.

2. Methods
2.1. Samples

The samples originate from a deep ice core drilled in Dome C on
the East Antarctic Plateau (75°06’ S; 123°21’ E; altitude 3233 m;
mean annual temperature —54 °C) within the framework of the
European Project for Ice Coring in Antarctica (EPICA) (EPICA
community members 2004). A total of 294 samples were extracted
from between 112 and 656 m depth which, according to the EDC3

timescale (Parrenin et al., 2007) spans a period between 2.9 and
33.7 kyr BP. Temporal spacing of the samples is ~60 and ~ 140
years during the Holocene and the last glacial stage (LGS), respec-
tively. Each sample encompasses 2-3 years in the Holocene and
4-5 years in the LGS. A gap occurs between 21.7 and 27.3 kyr BP
where only four samples were available.

2.2. Analysis

An ultra-sensitive specific methodology was developed for the
direct determination of REE in polar ice. This method, extensively
illustrated elsewhere (Gabrielli et al., 2006a), is based on Induc-
tively Coupled Plasma Sector Field Mass Spectrometry (ICP SFMS;
Element2, Thermo) coupled with a micro-flow nebulizer and
a desolvation system. With this setup, REE can be detected down to
the sub-pg g ! level (1 pgg ' =10""?gg!)in ~1 ml of melted ice
acidified to pH =1 with HNOs (ultra-pure grade). We will discuss
this sample pre-treatment below in section 2.4.

Samples were analysed in low-resolution mode. A desolvation
system for sample introduction enhanced the sensitivity and
eliminated the spectral interferences. In the course of this analysis,
however, a residual interference still affected Gd concentrations,
which are reported as upper limits and not used in this study.
A matched calibration was used for quantification. The precision
(relative standard deviation on ten replicates) ranged from 2% for
La, Ce, Pr and Lu, up to 10% for Er, Tm and Yb. Instrumental limits of
detection (LOD) ranged from 0.0004 pg g~ ! for Lu to 0.03 pgg~! for
Gd. To estimate the accuracy, we carried out a recovery test by
adding standard spikes of a REE multi-element stock solution to
a real sample. The REE concentrations determined in a sample
spiked at 0.62 pg g™, were calculated to fall between 95 and 105%
of the expected value using the slopes provided by the matched
calibration.

Due to the extremely low LOD and the REE concentrations of the
blanks (see section 2.3), the relative instrumental standard devia-
tion of the spectra analysed during a run essentially represents the
whole analytical uncertainty. For LREE, this is 8% for Holocene
samples and 3% for LGS samples. For MREE and HREE, this is higher
(25-35% in the Holocene and 5-8% in the LGS samples).

2.3. Sample decontamination and blank levels

The determination of REE in EDC is an analytical challenge
because of the extremely low concentrations, which range down to
the femtogram per gram (10~ gg~1) level, and because of the
consequent risk of contamination (Gabrielli et al., 2006a). Clean
procedures and sensitive instrumental techniques are thus
required. For REE determination, low density polyethylene bottles
(LDPE; Nalgene) were cleaned according to established procedures
(Boutron, 1990). The decontamination of the ice samples was
performed by means of triple washing with ultra pure water, using
clean stainless steel forceps. This process is described elsewhere
(Delmonte et al., 2004) and was already successfully used for trace
element analysis in ice (Gaspari et al., 2006; Wei et al., 2008).

The procedural blank is defined as the REE content introduced
into the samples during their preparation. This was estimated as
the difference between the REE concentrations found in an artificial
ice core (constructed by freezing ultra pure water in a 2L
Perfluoroalkoxy (PFA) bottle) before and after the decontamination.
Although variations at this ultra low level might be relatively large,
the REE content introduced by sample handling is undetectable
(Table 1). The water and the PFA bottle used to make this artificial
ice core were sufficiently clean to provide a REE background that
was low enough to to allow recognition of a small procedural
contamination. However, much lower REE concentrations can
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Table 1
Limit of detection (LOD), typical REE concentrations (pg g™') in ultra pure water and in an artificial ice core before and after the decontamination process.
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Limit of Detection (LOD) 0.004 0.004 0.002 0.008 0.008 0.003 0.030 0.002 0.003 0001 0.002 0.001 0.002 0.001

REE in ultra pure water 0.01 0.03 <0.002 <0.008 <0.008 <0.003 0.3 <0.002 <0.003 <0.001 <0.002 <0.001 <0.002 <0.001

Artificial ice core Before processing 0.08 0.11 0.01 0.07 0.08 0.03 0.11 0.002 0.014 0.002 0.005 0002 0.013 0.001

After processing  0.07 0.10 0.01 0.06 0.08 0.03 0.08 0.002 0.010 0002 0.004 0.002 0010 0.001

routinely be obtained in ultra pure water that is collected in LDPE
bottles used for sample storage (Table 1). Thus the REE concen-
trations determined in the artificial ice core likely reflect the overall
contamination level of the PFA bottle used and were not subtracted
from the samples concentration.

The negligible procedural blanks suggest that excellent REE
contamination control can be achieved by adopting triple washing
in ultra pure water as an alternative to the time-consuming chis-
elling technique (Candelone et al., 1994). In this way, sample
preparation is much faster and the sample analysis rate increases
significantly. The confidence in the REE concentrations in samples
prepared using this method (Table 2) is confirmed by comparison
with very similar concentrations found in other EDC sections
cleaned by chiselling (Gabrielli et al., 2006a).

2.4. Sample treatment

In order to understand how various sample pre-treatments
impact the REE concentrations and their ratios in EDC, we tested
different preparations of melted ice-core samples at low (inter-
glacial) and high (glacial) REE concentrations (Gaspari et al., in
preparation). Briefly, these samples were pre-treated in three
different ways:

Method 1 (Acid leached): 1% HNOs3 (ultra-pure grade) acidifi-
cation. This is the conventional preparation used for trace element
determination and was also used in this work.

Method 2 (Pre-filtered acid leached): 1% HNOs (ultra-pure
grade) acidification of samples, which had passed through a 0.2 um
filter before acidification. The aim of this test was to obtain infor-
mation on the REE in the dissolved fraction (particles below 0.2 um
in diameter).

Method 3 (Total): full acid (ultra-pure grade HF and HNO3)
digestion using microwave heating. This test allowed determina-
tion of the total REE concentration.

In Fig. 1a, we display the mass fraction relative to the total
content in unfiltered samples (Method 1/Method 3) that are
representative of glacial and interglacial stage ice. This is ~0.55 for
LREE, ~0.50 for MREE, and ~0.40 for HREE. Thus, LREE does
appear slightly over estimated with respect to the fractions of MREE
and HREE (~9% and ~27%, respectively) determined by our
method. This should be taken into account when comparing the
shape of the REE patterns obtained in the ice and in the dust
samples collected in potential source areas (as discussed in section
4.2 below).

However, we note that the mass fraction determined for each
REE is identical within the error bars (15) at low (interglacial) and
high (glacial) levels. In general, our experiment suggests that we
can compare directly glacial/interglacial changes in dust composi-
tion. In fact, as all the samples should show the same LREE
enrichment (or HREE depletion), this slight artefact should not
affect the glacial-interglacial variations of the REE patterns.

In Fig. 1b, we display the mass fraction determined in filtered
samples (Method 2/Method 3). In this case, the mass fraction of
MREE (~0.50) is over estimated by ~20% with respect to those of
LREE and HREE ( ~0.40). Of course, the REE mass fraction in filtered
samples is lower than in unfiltered samples, but this is mainly
caused by the decreased contribution of LREE, which strongly
suggests that it is essentially the dissolved fraction that is deter-
mined by our method. This conclusion is consistent with the idea
that the solid (dust) mass fraction for particles <0.7 pm in diameter
is negligible in this ice (Delmonte et al., 2002). Comparison with
Fig. 1a suggests that a part of the LREE (~0.15) is dissolved in
solution only after acidification both at low (interglacial) and high

Table 2
Main statistics and enrichment factors (Ce is the crustal reference) of REE in EDC during the Holocene and the last glacial stage.

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
Concentrations (pg g™)
Average Holocene 0.39 091 0.092 031 0.05 0.013 <0.14 0.008 0.043 0.008 0.022 0.003 0.017 0.003
Median Holocene 0.26 0.60 0.065 0.21 0.04 0.009 <0.09 0.006 0.034 0.006 0.017 0.002 0.012 0.002
Average last glacial age 7.6 184 2.1 7.6 1.7 0.40 <13 0.24 13 0.24 0.66 0.089 0.56 0.078
Median last glacial age 6.3 15.0 1.7 6.3 1.5 0.33 <1.0 0.20 1.1 0.20 0.56 0.075 047 0.067
Maximum 38 98 11.7 40 9.6 22 <93 14 6.7 14 3.6 0.5 3.0 0.43
Minimum 0.022 0.042 0.004 0.019 <0.008 <0.003 <0.03 <0.002 0.006 0.001 0.002 0.001 <0.002 0.001
Average last glacial age/Holocene 20 20 23 25 33 32 - 30 30 30 30 28 34 27
Median last glacial age/Holocene 24 25 27 30 37 37 - 32 32 33 33 31 39 30
Crustal Enrichment Factors
Average Holocene 0.9 1.0 1.0 0.8 0.8 0.7 - 1.0 0.9 0.8 0.9 0.8 0.6 0.7
Median Holocene 0.9 1.0 1.0 0.8 0.8 0.7 - 1.0 0.9 0.8 0.9 0.8 0.6 0.6
Average last glacial age 0.8 1.0 1.0 0.9 1.1 1.0 - 1.2 1.1 1.0 1.1 1.0 0.9 0.7
Median last glacial age 0.8 1.0 1.0 0.9 1.1 1.0 - 1.2 1.1 1.0 1.1 1.0 0.9 0.7
Average last glacial age/Holocene 0.9 1.0 1.1 1.1 14 1.5 - 1.2 1.2 1.2 1.2 1.2 1.5 1.1
Median last glacial age/Holocene 0.9 1.0 1.1 1.1 14 1.4 - 1.2 1.2 1.2 1.2 1.2 1.5 1.2
Mean crustal concentrations (ug g') 30 60 6.7 27 5.3 13 4.0 0.65 3.8 0.8 2.1 0.30 2.0 0.35

(from Wedepohl, 1995)
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Fig. 1. Fraction of the total REE concentration determined in EPICA Dome C ice samples
pre-treated with acidification (Method 1: acid leached; panel a) and with acidification
after passage through a 0.2 um filter (Method 2: pre-filtered acid leached; panel b). Total

REE concentrations were obtained by means of a full acid digestion (Method 3: total).
Error bars signify the standard deviations linked to three repetitions of the test.

(glacial) concentrations. This provides evidence that particles
>0.2 um are prone to release more LREE in the acidified solution
and are possibly responsible for the slight artefact that is observed.

3. Results and discussion
3.1. REE concentrations and enrichment factors

REE concentrations show large variations during the last climatic
cycle with lower values during the Holocene (e.g. average
La=0.39 pgg !: Lu=0.003 pgg~ ') and higher values (20-30 times)
during the LGS (e.g. La=7.6 pgg~'; Lu=0.078 pgg~') (Table 2). REE
are highly correlated with the dust concentrations determined in the
same samples (R ~ 0.90-0.95) and their plotted time series are very
similar (Fig. 2a, b).

The REE enrichment factors [Ef(REE)ce] calculated as (REEjce/
Cejce)/(REEcrust/Cecrust), Where Ce is taken as a crustal reference
(REE in the terrestrial crust from Wedepohl (1995)), are always

1004 4@ :
= |
o0 |
0 10 -
&
m
) 1
¢ 14
W |
|
0.1 - !
[ b
I L 1000
|
! )
I g
F 100 -
=
(1))
O'Q‘

(wr z-1 9) dz18 3snq

(ez1s 1sn@ “PEAY) A

20000 30000

Age (years BP)

10000

o -

Fig. 2. (a) The glacial-interglacial variations of the REE fallout to Dome C are illustrated
by the sum of the REE concentrations (}_REE). (b) The Dome C dust concentration
profile (Lambert et al., 2008). (c) The REEjngex, Which is a proxy of dust composition
(smoothed solid line; the shading indicates 1¢ analytical uncertainty) is displayed with
the dust size data (smoothed dotted line) (Delmonte et al., 2002). The vertical bar
highlights dust showing a tendency towards glacial characteristics at ~8 kyr BP. (d) D
is taken as a proxy of past air temperature at Dome C (Jouzel et al., 2007). (e) A one-to-
one correlation between the row (i.e. non smoothed) REE;,qex and dust size data is
displayed between 13.5 and 10 kyr BP.

close to unity (Table 2). This strongly supports their crustal origin
and the absence of significant contamination. We note that the
calculation of the Ef with respect to Mn (Gabrielli et al., 2005b)
provides essentially the same result. However, in this latter case,
the [Ef(REE)mn] is less precise because Mn was determined during
a different session of analysis. Altogether, these results provide
strong evidence that REE concentrations in EDC ice represent the
aeolian dust composition.
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3.2. A REE index of the dust composition

In order to study the variations in dust composition, a common
practice is to normalize REE using a standard. We take as standard
the mean REE crustal concentrations (REEice/REEcyst; REEcryst from
Wedepohl, 1995). In addition, we re-normalize these ratios using
Ce, (REEjce/REEcryst)/(Cejce/Cecrust).- In this way we obtain REE
patterns of comparable magnitude at any REE concentration level.
Note that this normalized notation is equivalent to (REEjc/Cejce)/
(REE¢rust/Cecrust), or Ef(REE)ce. Thus, a vector whose single compo-
nents are Ef(i) can unequivocally characterize the dust composition
of every sample:

Ef(REE)c, = [Ef(La), Ef(Pr).......Ef(Yb), Ef (Lu)]

To estimate the difference in dust composition between the
Holocene and the LGS, we have calculated the euclidean distance
(defined as REEjnqex) Of the Ef(REE)ce linked to each sample from
the median Ef(REE)ce of the LGS, defined as:

Med(REE)q, = [Med(La), Med(Pr)....... Med(Yb), Med(Lu)]

This is assumed to be a constant reference. In this way the
distance between every glacial Ef(REE)ce and the Med(REE)ce is
expected to be small while, in general, this can be larger when
considering the Holocene Ef(REE)ce. Thus, glacial/Holocene differ-
ences in REE composition will be emphasized and summarized
quantitatively as follows:

REE;pqex = \/ Z(Ef; — Med;)?

The proposed REEjngex summarizes the REE information and
allows the evaluation of the change in dust composition of each
sample when compared to the defined glacial stage standard.
Rigorous calculation of the error propagation affecting the REEjygex
shows that its median uncertainty is 29% during the Holocene and
36% during the LGS. The higher relative uncertainty observed over
the LGS can be explained by the much smaller difference of each
Ef(REE)ce from Med(REE)ce when compared to the Holocene.
However, the absolute uncertainty is larger during the Holocene.

The REEjngex is low and constant during the LGS (Fig. 2¢), indi-
cating homogeneous glacial dust composition. The REEjnqex Starts
to increase at ~ 15 kyr BP, ~3 kyr after the onset of the last tran-
sition, when the increase in Antarctic temperatures and the
decrease in dust concentrations commenced (Fig. 2d and 2b). The
variation of the REEj,gex (~400%) from the LGS to the Holocene is
much higher than its uncertainty, providing high confidence that
the observed shift is not due to the higher analytical uncertainty
affecting REE concentrations during the Holocene.

The REEjngex peaks at ~11 kyr BP in correspondence with the
Antarctic Holocene optimum and the so-called dust minimum
(Delmonte et al., 2002), suggesting that the fallout of typical glacial
dust was essentially shut down and different dust characteristics
could emerge. In general, the dust composition appears very vari-
able during the Holocene with respect to the LGS. A noticeable
REEjndex minimum for the Holocene occurs between 7.5 and 8.3 kyr
BP (Fig. 2c) suggesting the occurrence of dust fallout with a more
glacial-like composition around 8 kyr BP. This will be discussed in
the next section.

3.3. The 8 kyr dust event

A prominent sharp cold climatic event at ~8.2 kyr BP and
lasting ~ 70 years was recorded in Greenland (Johnsen et al., 1992).
This was a possible response to a large flood of freshwater
(~84kyr BP) to the ocean that slowed the North Atlantic

thermohaline circulation (e.g. Alley and Agustsdottir, 2005).
Evidence of a cooling around ~8 kyr has been widely recorded
throughout the Northern Hemisphere (Rohling and Palike, 2005)
although less strikingly than in Greenland. Despite the slowing of
the thermohaline circulation from a large input of freshwater,
a corresponding warm event was not recorded in the Southern
Hemisphere as a counterpart to the ~8.2 kyr cooling that occurred
at the high northern latitudes. This observation evidently contrasts
with the bi-polar seesaw concept (Stocker and Johnsen, 2003).

Difficulties in detecting this abrupt event far away from the
Arctic might arise from insufficient time resolution inherent in
most palaeoclimatic records (Thomas et al., 2007) and because this
short climatic event is thought to be embedded in a longer term
widespread cooling that spanned some 400-600 years (Alley and
Agustsdottir, 2005). This is also suggested by the EDC 3D profile
(Fig. 2d). Because of the lack of evidence of such a rapid event in the
Southern Hemisphere and because of the appearance of the longer
term global cooling in EDC at ~8 kyr BP, it is likely more appro-
priate to attribute the observed REE changes to this long-term
cooling.

An increase in rainfall and a fluvial pulse was recorded in south-
eastern Australia between 9.5 and 7.5 kyr BP, pointing to unusually
humid conditions in this region during the Holocene (Gingele et al.,
2007). In South America, glaciers advanced ~8.5 kyr BP, likely as
a result of a northward migration of the southern westerlies that
caused an increase in precipitation and/or a decrease in tempera-
ture at this latitude as suggested by Douglass et al. (2005).

The REEjngex suggests that the dust shows tendencies towards
glacial characteristics between 7.5 and 8.3 kyr BP that was not
accompanied by a remarkable increase in dust concentrations. In
fact, we note that there was only a moderate increase in median
REE concentrations (40-60%) in the 5.3 to 9.3 kyr BP period when
compared to the previous and successive 4 kyr periods (Fig. 2a).
Overall, our observations suggest a moderate reactivation of the
glacial sources (e.g. South America) of Antarctic dust, possibly
accompanied by the concurrent suppression of other sources (e.g.
Australia) due to more humid conditions.

3.4. Atmospheric transport and dust composition

Running correlation coefficients (21-sample window; 95% level
of confidence at R = 0.44) of REEjnqex and dust sizes (i.e. percentage
of fine dust between 1 and 2 pum) determined in the same samples
(Delmonte et al., 2002) are in general not significant but they show
an increasing trend from the LGM up to significant values of ~ —0.5
between 13.5 and 10 kyr BP (Fig. 2e). The persistence ( ~ 3.5 kyr) of
this early Holocene correlation is remarkable considering that it
was calculated from the raw data without any smoothing and that
the records were detrended from the general large glacial/inter-
glacial temporal variation. This correlation (—0.5) suggests that the
fine dust percentage decreases as the REE ratios deviate from the
typical LGS pattern. This may highlight a novel direct link between
the dust composition and atmospheric circulation. Stronger trans-
port and/or shorter atmospheric paths, possibly producing
a reduced mineralogical fractionation, led to a higher percentage of
large particles transported onto the East Antarctic Plateau during
the glacial-interglacial transition (Delmonte et al., 2002).

At ~10 kyr BP, the correlation between the REEj,dex and the dust
size decreases abruptly. Similarly, these variables are uncorrelated
during the LGS until the LGM. In general, this indicates a weak link
between atmospheric circulation and dust composition, possibly as
a consequence of a different dust regime which was dictated by the
sources rather than by changes in the long-range atmospheric
circulation (Delmonte et al., 2002; Fischer et al., 2007). Around
8 kyr BP, the dust size/REEjngex correlation achieved LGS values
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(Fig. 2e), supporting the idea that the observed return to a more
glacial-like dust composition was possibly due to a moderate
reactivation of the glacial sources at that time.

3.5. LREE, MREE and HREE temporal behaviour

To highlight the glacial/interglacial behaviour of the LREE, MREE
and HREE, we have normalized their concentrations using the
median glacial REE concentrations as a standard. When (LREE/
MREE)g;, (LREE/HREE)g and (MREE/HREE)g; are plotted versus the
age of the samples (Fig. 3), these ratios show a very low variability
during the LGS reflecting a fallout of homogeneous dust composi-
tion. Only one outlier occurs at ~27.3 kyr BP (585.2 m) when Tb
(a MREE) is enriched 5 times with respect to its mean crustal
composition. One possibility for this anomaly is that this enrich-
ment resulted from a singular volcanic ash fallout.
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Fig. 3. LREE/HREE ratios (a), LREE/MREE ratios (b) and MREE/HREE ratios (c) were
smoothed and plotted versus the age of the ice samples. In this case the REE
concentrations were normalized by their own median glacial values. The shading
indicates the linked 1¢ analytical uncertainty. The vertical bar highlights dust showing
a tendency towards glacial characteristics at ~8 kyr BP, also reported in Fig. 2.

Starting from ~ 15 kyr BP in the record, the (LREE/MREE)g and
(LREE/HREE)g ratios increase by ~20% while becoming more
variable. This behaviour persists during the Holocene part of the
record (Fig. 3), suggesting a fallout of variable dust composition. We
note that the Holocene variability is due to the enrichment of the
LREE relative to MREE and HREE because the relative composition
of these latter two remains substantially unchanged during
the transition. This different behaviour of the REE is possibly due to
the occurrence of particles enriched in LREE during the Holocene.
Finally, we also note that these REE ratios indicate that the dust
shows tendencies towards glacial characteristics between 7.5 and
8.3 kyr BP.

3.6. Evaluation of the REE crustal spectra

When plotted against their atomic number, the REE (this time
normalized by their mean crustal values; Table 2) allow a visual
comparison of the deviation from the mean terrestrial composition
of the dust fallout over different climatic stages. When averaged
over the LGS (Fig. 4), the REE pattern shows a rather uniform
crustal-like signature across the REE spectrum with a slight
enrichment in the MREE (~ 12%) over LREE and HREE.

This is in agreement with glacial stage REE patterns observed in
Vostok ice (Gabrielli et al., 2009) and those previously reported for
dust filtered from some analogous Vostok and Dome C sections
(Basile et al., 1997). As these latter data were obtained by using a full
acid digestion, this implies that the slight LREE enrichment as
shown by our test did not substantially affected the glacial REE
patterns in our samples.

Although the REE average pattern remains close to the average
crustal composition during the Holocene, the variability is higher
(Fig. 4), indicating an increasing contribution of dust characterized
by a more heterogeneous elemental composition. We observe an
average slight enrichment of LREE over MREE (8%) and HREE (16%).
This might be explained in terms of the slight artefact possibly
introduced by our method (see section 2.4). However, although the
same analytical procedure was used, this LREE enrichment is not
observed in EDC during the LGS neither in the Dronning Maud Land
(Antarctica) ice core during the Holocene and the LGS (Wegner
et al,, in preparation). In conclusion, it remains unclear whether the
observed average slight LREE enrichment is real or merely repre-
sents a different geochemical response of the EDC Holocene dust to
acidification. In any case, this at least provides evidence of the
occurrence of dust during the Holocene with significantly different
geochemical properties than during the LGS.

4. Dust source reconstruction
4.1. REE as a tracer of aeolian dust provenance

REE physical characteristics prevent them from being strongly
chemically fractionated by environmental processes. However, the
literature highlights how REE can be mobilized under certain
conditions. A classic experimental work (Balashov and Girin, 1969)
shows that 20-95% of the REE in clays are readily leachable and
therefore may be available for migration, with the MREE being
most susceptible and the LREE least. In particular, REE can be
mobilized during both humid and temperate weathering (Balashov
et al., 1964).

Our test (see paragraph 2.4) suggests that the REE fraction
determined by our method essentially originates from the REE
dissolved in the melted ice (Fig. 1). The bulk of the REE in eroded
material is contained in clays while quartz and other major silicates
are relatively depleted (Henderson, 1984). In particular clays, as
products of weathering of igneous minerals, tend to inherit and
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Fig. 4. REE average normalized crustal patterns in the EPICA Dome C ice core during
the Holocene and the last glacial stage are compared to those obtained from the
aeolian fraction of dust collected in potential source areas (PSA). These crustal patterns
are re-normalized by Ce to obtain patterns of comparable magnitude. Each pattern is
equally constrained between its maximum and minimum values. The error bars (10)
represent the natural variability of the samples during the time (EPICA Dome C ice)
and in the space (PSA samples).

average the REE distribution of their sources. As a large part of REE
in clays is readily leachable, one possibility is that the measured
dissolved REE content in EDC primarily reflects the clay content of
the aeolian dust and by extension the average REE distribution of
the igneous rocks at the potential source areas (PSA).

Defining exactly to what extent REE are conserved in aeolian
dust with respect to their source is clearly beyond the scope of this
work. However, given that REE are only slightly fractionated by
chemical processes and are possibly transported mainly by clay
particles, the REE composition in comparable mineralogical
fractions at the source and at the sink can be compared to trace
back the dust deflated from the source. For this reason, great care
must be taken in selecting the appropriate dust size of samples
from the PSA. In our case, however, one should also take into
account that our methodology could be slightly biased towards
a slight LREE enrichment. In conclusion, great precautions must be
taken in using REE as tracers of dust provenance.

4.2. REE patterns comparison

In order to attempt a preliminary reconstruction of the dust
provenance using the REE, their patterns determined in EDC ice
were compared with those obtained from the aeolian dust fraction
collected at the PSA (Supplementary material) according to the
criteria described in Delmonte et al. (2004). Briefly, the samples
were collected from loess, silts, sands, fluvioglacial sediments,
aeolian deposits and moraines: four from the Pampas in northern
South America, five from Patagonia and Chile in southern South
America, three from South Africa, one from New Zealand, and eight
from the Dry Valleys and Victoria Land in Antarctica. For these
samples, the dust fraction <5 pm was extracted (Delmonte et al.,
2004) and analysed for REE (Wegner et al., in preparation). Twenty
seven samples of fine grained sediments (<2 pum) from several
rivers (mostly obtained as overbank deposits) were also collected
from the Murray Darling Basin in south-eastern Australia (Gingele
and De Deckker, 2005) and analysed. Complementary REE data
from eleven New Zealand and six Australian bulk samples were
obtained from Marx et al. (2005).

During the LGS, the slight enrichment in MREE suggests a Pata-
gonian origin (as indicated by Basile et al., 1997) because this
pattern resembles those from volcanic rocks sampled in this region
(Gaiero et al., 2004) and those shown by our South American dust
samples (Fig. 4). However, this homogeneous crustal-like signature
is also consistent with an aeolian dust originating from a well-
mixed pool of various sources located in different areas or within
the same region (e.g. southern South America; see Gaiero et al.,
2007). We also note that sedimentary processes are also recognized
to be the cause of homogenization of the REE fractionation, which
occurs during the formation of igneous rocks (Henderson, 1984).

During the LGS, aridity on Earth was quite widespread and
a synchronous change in atmospheric dust occurred at low and
high latitudes in the Southern Hemisphere (Winckler et al., 2008).
Thus the homogeneous REE composition found in East Antarctic ice
during the LGS may also reflect a “background” that was homo-
geneous in dust composition, as a result of different influxes from
multiple areas located in the Southern Hemisphere. One conse-
quence is that it might not be possible to trace back the dust sources
during the LGS. However, this emerging hypothesis of a large-scale
homogeneous compositional background will need to be verified
using other dust proxies and modelling studies.

REE patterns point to a more variable dust composition (Fig. 4)
indicating multiple dust contributions from various sources during
the Holocene. A slight average enrichment in LREE during the
Holocene may reflect a different geochemical response of the
aeolian dust to acidification during interglacials. A similar LREE
enrichment was also observed in some Vostok interglacial ice
sections (Gabrielli et al., 2009). However, we note that the local
Antarctic dust sources also show enrichment in LREE. Assuming
that Holocene REE EDC patterns are reliable, this LREE enrichment
would point to Antarctica as a possible source contributing to the
dust budget in Antarctic ice during the Holocene.

Today about 2% of Antarctica is free of ice. These deglaciated
areas occur sporadically around the coast of East Antarctica, in the
Transantarctic Mountains, and in the Antarctic Peninsula. Aeolian
dust trapped in Antarctic ice has a higher Isothermal Remanent
Magnetization (IRM) during the Holocene and a relatively higher
IRM in EDC than in Vostok ice (Lanci et al., 2008). A high IRM points
to a local source of higher density dust particles (iron oxides). This
idea is consistent with a Holocene local volcanic dust contribution
to Dome C (Vallelonga et al., 2010) and with the higher super-
chondritic fluxes of siderophilic elements to East Antarctica during
the Holocene (higher in EDC than in Vostok ice) (Gabrielli et al.,
2006Db).
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In conclusion, a LREE enrichment would support several
independent lines of evidence pointing to Antarctica itself as a dust
source during the Holocene. However, the larger variability in dust
composition during the Holocene allows us to observe similarities
of several individual Holocene REE patterns (not shown) with
Australian, New Zealand and South African signatures. This may
support the idea of multiple dust contributions from various
sources during the Holocene and does not allow the exclusion of
any major PSA in the Southern Hemisphere.

5. Conclusions

REE prove to be sensitive indicators of changes in aeolian dust
composition trapped in Antarctic ice during the last climatic cycle.
The dust shows a persistent crustal-like REE composition during
the LGS that was possibly produced either by the atmospheric
mixing of the abundant emissions derived from multiple source
areas or by the averaging of individual heterogeneous sources
within one single region (e.g. South America). If confirmed by
further developments in the REE analysis, the LREE enrichment
found in EDC ice during the Holocene might support several
independent lines of evidence that point to Antarctica as an
important dust source during the Holocene. For this purpose,
a routine ultra clean full acid digestion should be developed.

Starting at ~15 kyr BP, we observe a major variation in dust
composition, whose variable character persists throughout the
current interglacial. Likely contributions from multiple sources
emerged after the high deposition of glacial dust started to decrease
at ~15 kyr BP. Interestingly, the dust composition might have been
dictated by the atmospheric transport at the onset of the Holocene
(10-13.5 kyr BP). In contrast, the dust composition might have been
regulated by environmental changes that occurred at the sources
during the other periods. In particular, a return to more glacial-like
dust characteristics is apparent between 7.5 and 8.3 kyr BP, probably
as a consequence of a modest reactivation of the glacial sources.
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